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Abstract

Model-free analysis is a technique commonly used within the field of NMR spectroscopy to extract atomic
resolution, interpretable dynamic information on multiple timescales from the R1, R2, and steady state
NOE. Model-free approaches employ two disparate areas of data analysis, the discipline of mathematical
optimisation, specifically the minimisation of a v2 function, and the statistical field of model selection. By
searching through a large number of model-free minimisations, which were setup using synthetic relaxation
data whereby the true underlying dynamics is known, certain model-free models have been identified to, at
times, fail. This has been characterised as either the internal correlation times, se, sf, or ss, or the global
correlation time parameter, local sm, heading towards infinity, the result being that the final parameter
values are far from the true values. In a number of cases the minimised v2 value of the failed model is
significantly lower than that of all other models and, hence, will be the model which is chosen by model
selection techniques. If these models are not removed prior to model selection the final model-free results
could be far from the truth. By implementing a series of empirical rules involving inequalities these models
can be specifically isolated and removed. Model-free analysis should therefore consist of three distinct steps:
model-free minimisation, model-free model elimination, and finally model-free model selection. Failure has
also been identified to affect the individual Monte Carlo simulations used within error analysis. Each
simulation involves an independent randomised relaxation data set and model-free minimisation, thus
simulations suffer from exactly the same types of failure as model-free models. Therefore, to prevent these
outliers from causing a significant overestimation of the errors the failed Monte Carlo simulations need to
be culled prior to calculating the parameter standard deviations.

Abbreviations: AIC – Akaike�s Information Criteria; v2 – chi-squared function; ck – constraint value; CSA –
Chemical Shift Anisotropy; DMG – Double Motion Grid; �i – elimination value; NOE – nuclear Over-
hauser effect; r – bond length; R1 – spin-lattice relaxation rate; R2 – spin-spin relaxation rate; Rex – chemical
exchange relaxation rate; RG – Rex Grid; S2, Sf

2, and Ss
2 – model-free generalised order parameters; se, sf,

and ss – model-free effective internal correlation times; sm – global rotational correlation time.
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Introduction

Model-free analysis of heteronuclear NMR relax-
ation data, specifically the R1 and R2 relaxation
rates together with the steady state NOE, is used
to extract easily interpretable dynamical informa-
tion describing both the overall tumbling and the
internal motions of a macromolecule (Lipari and
Szabo, 1982a, b; Clore et al., 1990). The internal
dynamics is quantified by three types of para-
meter: the generalised order parameter S2 which
characterises the amplitude of the motion; the
effective internal correlation time se which links
the amplitude to a timescale; and the chemical
exchange relaxation parameter Rex which is an
indicator of slower microsecond to millisecond
timescale dynamics. The order parameters range
from one for complete rigidity to zero for high
mobility and the timescale of extractable motions
can range from the sub-picosecond range to the
global tumbling time which is within the nano-
second range. The theory has been extended to
include motions on two different timescales (Clore
et al., 1990) where the faster of the motions is
parameterised by Sf

2 and sf, the amplitude and
timescale respectively, while the slower is param-
eterised by Ss

2 and ss.
The internal model-free dynamics are decou-

pled by construction from the global diffusion
(Lipari and Szabo, 1982a). The overall rotational
diffusion of the entire molecule is described by a
three-dimensional Cartesian tensor. Apart from
orientation, the tensor can be described by three
independent terms dependent on its eigenvalues. If
the three eigenvalues of the tensor are equal, the
molecule tumbles isotropically and can be de-
scribed by the single parameter, sm, the global
correlation time. If only two of the eigenvalues are
equal, the diffusion is anisotropic and axially
symmetric and is described by the addition of a
parameter accounting for the anisotropy. If all
three eigenvalues are different, the global correla-
tion time, anisotropy, and asymmetry (or rhomb-
icity) characterise the fully anisotropic diffusion
tensor. In certain situations, the assumption that
all residues of the molecule under study will
experience the same global rotational diffusion
may not be the best model of the entire system. To
redress this problem, another model whereby all
residues are assumed to tumble independently can

be optimised. Each residue has its own global
correlation time parameter called the local sm.

While appearing to be a contradiction in terms,
the expression �model-free model� encapsulates two
different concepts. �Model-free� refers to the ab-
sence of a physical model delineating the super-
position of all trajectories and microstates of the
internal motions of the system. These motions are
solely characterised by amplitude and timescale. In
contrast, the second use of the word �model� orig-
inates from the various �model-free� mathematical
models used to represent different classes of mo-
tion. By using various combinations of model-free
parameters, diverse mathematical models can be
constructed. These models overlap significantly
and have no clear boundaries as, not only are
many models parametric restrictions of others but,
the simpler models will satisfactorily approximate
the more complex ones. The distinctions between
them are not physical but purely statistical and
depend on the data collected and, most impor-
tantly, the errors. Although eight models of vary-
ing complexity can be created (Fushman et al.,
1997; Orekhov et al., 1999; Korzhnev et al., 2001;
Zhuravleva et al., 2004),

m1¼fS2g; ð1:1Þ

m2¼fS2; seg; ð1:2Þ

m3¼fS2;Rexg; ð1:3Þ

m4¼fS2; se;Rexg; ð1:4Þ

m5¼fS2;S2
f ; ssg; ð1:5Þ

m6¼fS2; sf;S
2
f ; ssg; ð1:6Þ

m7¼fS2;S2
f ; ss;Rexg; ð1:7Þ

m8¼fS2; sf;S
2
f ; ss;Rexg; ð1:8Þ

often only the five simplest of these are used in the
literature. Although models m6 to m8 are not
utilised, the concepts introduced in this paper
apply to these higher, more complex model-
free models equally as well. When the local
sm parameter is assumed rather than a global
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rotational diffusion tensor, a new set of models can
be created which include an additional dimension
to the above models. These are

tm1¼fsm;S2g; ð2:1Þ

tm2¼fsm;S2; seg; ð2:2Þ

tm3¼fsm;S2;Rexg; ð2:3Þ

tm4¼fsm;S2; se;Rexg; ð2:4Þ

tm5¼fsm;S2;S2
f ; ssg; ð2:5Þ

tm6¼fsm;S2; sf;S
2
f ; ssg; ð2:6Þ

tm7¼fsm;S2;S2
f ; ss;Rexg; ð2:7Þ

tm8¼fsm;S2; sf;S
2
f ; ss;Rexg: ð2:8Þ

The model-free interpretation consists purely
of data analysis methods using techniques from
the mathematical fields of modelling and optimi-
sation and the statistical field of model selection.
Data analysis usually involves two major steps,
model-free minimisation (Palmer et al., 1991;
Mandel et al., 1995; Orekhov et al., 1995; Fush-
man et al., 1997) followed by model-free model
selection (Mandel et al., 1995; d�Auvergne and
Gooley, 2003; Chen et al., 2004). Standard model-
free analysis uses a predefined set of mathematical
models representing different types of motion,
optimises the parameters of these models to fit the
relaxation data, and then uses model selection to
determine which of the model-free models best
describes the data. However, no attempt is made
to identify whether the optimised parameters of
any of these models are adequate. Mathematical
modelling usually involves a stage whereby a
model is validated to check if it is credible (Bel-
lomo and Preziosi, 1994). The user can then decide
whether the model is adequate, whether the model
should be adjusted, or whether the model should
be rejected. Model modification is irrelevant,
however, as the model-free mathematical models
were constructed prior to model-free analysis
(Models 1.1–1.8 and 2.1–2.8), yet certain models

should be rejected or eliminated prior to model
selection. The effect of not removing failed models
is that a model with wildly incorrect parameter
values may be selected rather than one with
parameters close to the true values.

Apart from its application between model-free
minimisation and model-free model selection,
model elimination can also be used to improve
the accuracy of model-free error analysis. Multi-
ple iterations of model-free minimisation, model
elimination, and model selection are required to
obtain convergence of the global model, the com-
bination of the global diffusion tensor with the
selected model-free model for each residue. After
convergence and model selection of the global
model, error analysis by Monte Carlo simulations
can begin. The simulations consist of taking the
model-free parameters which were fitted to the
collected data and errors and back-calculating
synthetic relaxation data. This data is then rando-
mised n times using the experimental errors, creat-
ing n randomised synthetic relaxation data sets.
The data sets are assumed to have the same error as
the original collected data. Model-free parameters
for each simulation are optimised by v2 minimisa-
tion using exactly the same methods as for the
collected data. Each model-free parameter has then
been fitted n times creating a probability distribu-
tion, the standard deviation of which is a good
approximation of the true standard deviation of the
model-free parameter fitted to the collected data.

Monte Carlo simulations essentially involve a
large number, n, of independent model-free mini-
misations. Even if the model-free parameters fit
the collected relaxation data well and are a rea-
sonable approximation to the truth, the randomi-
sation used to create the synthetic relaxation data
sets can create a situation whereby a number of the
simulations fail by precisely the same mechanism
by which model-free models can fail. These have
been identified in the past and have been removed
by trimming the upper and lower tails of the v2

distribution of simulated results. For example, this
has been put into practise as an option in the
program Modelfree (Palmer et al., 1991; Mandel
et al., 1995). However, the v2 distribution is not a
good differentiator of failed verses reliable simu-
lations. Using model elimination methods a highly
selective and accurate approach can be imple-
mented for the removal of failed simulations.
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Methods

Searching the model-free space

To identify failure of model-free models, model-
free minimisations were carried out on large
numbers of independent data sets. The method-
ology employed to select and create the different
data sets was similar to those presented in d�Au-
vergne and Gooley (2003). Two three-dimensional
grids were created to cover a significant proportion
of the model-free parameter space. The first grid,
labelled the Rex Grid (RG), consists of the three
dimensions {S2, se, Rex} and covers all single
model-free motions with chemical exchange
relaxation. This grid corresponds to model m4
(Model 1.4). When the parameters se or Rex are
statistically zero, the models m1, m2, and m3
(Models 1.1 to 1.3), which are parametric restric-
tions of the higher model m4, are perfect approx-
imations. The second grid is labelled the Double
Motion Grid (DMG) and consists of the dimen-
sions {Sf

2, Ss
2, ss}. This grid covers part of the

model-free space encapsulating the two separate
motions of model m5 (Model 1.5). If one of these
two motions is insignificant or indistinguishable
from the other, in which case one of the order
parameters, Sf

2 or Ss
2, is not statistically different

from one, then model m2 (Model 1.2) is a perfect
approximation of the model-free motions. In
addition, if the parameter ss is statistically zero then
model m1 (Model 1.1) is a perfect approximation.
These two grids cover the entire model-free space of
the five simplest models (Models 1.1–1.5). The
more complex double timescale motions which
include the sf and Rex parameters, m6, m7, and m8
(Models 1.6–1.8) have not been used to identify
failed models, however, the conclusions apply to
these models equally as well.

The increments of each model-free parameter
dimension in the two three-dimensional grids are

S2;S2
f ;S

2
s¼f0:001;0:388;0:582;0:698;0:776;

0:831;0:873;0:905;0:931;0:952;0:970g;
ð3:1Þ

se; ss ¼ f0:1; 0:5; 1; 2; 4; 8; 16; 32; 64; 128; 256;
512; 1024; 2048; 4096; 8192g;

ð3:2Þ

Rex ¼f0; 0:149; 0:223; 0:332; 0:495; 0:739;
1:102; 1:644; 2:453; 3:660; 5:460; 8:145;

12:151; 18:127; 27:043g;
ð3:3Þ

where the values of the correlation time parame-
ters se and ss are in picoseconds and the values of
the chemical exchange parameter Rex are mea-
sured in inverse seconds. The Rex values are scaled
quadratically with field strength and those given
are for 600 MHz data. A total of four separate
grids were used, the Perfect Rex Grid with noise-
free synthetic relaxation data, the Random Rex

Grid with randomised, noisy relaxation data, the
Perfect Double Motion Grid with noise-free data,
and the Random Double Motion Grid with
randomised data. The total number of points in all
four grids embodies 9,152 independent data sets.

The data created for these grids consisted of
synthetic 15N relaxation data. For each data set or
grid point, six data points were generated, the 15N
R1 and R2, and the {1H}-15N steady state NOE,
both at 600 and 500 MHz. By specifying the values
of the model-free parameters and the specific
model-free model used for each grid point, exact
relaxation data was created by back-calculation.
The data was then randomised using errors of 2%
for the R1 and R2 and 0.04 for the 600 MHz NOE
and 0.05 for the 500 MHz NOE. These errors were
chosen to best mimick the white noise associated
with experimental NMR data (d�Auvergne and
Gooley, 2003).

The assumptions used in the calculation of the
relaxation data include that the CSA for all cases
is )160 ppm and that the bond length r is
1.02 Å. The major axes of the axially symmetric
dipolar and chemical shift tensors were assumed
to be co-linear and chemical exchange was scaled
quadratically with field strength. All stated Rex

values correspond to the chemical exchange con-
tribution to R2 at 600 MHz data. The diffusion
tensor was assumed isotropic and fixed to the
value of 10 ns.

Model-free parameter constraints

The simple model-free models (Models 1.1–1.5)
and the simple model-free models with a local sm
parameter (Models 2.1–2.5) were minimised sepa-
rately. During minimisation, the constraints
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0 � S2;S2
f ;S

2
s � 1; ð4Þ

0 � se; ss; ð5Þ

0 � Rex; ð6Þ

0 � sm ð7Þ

were applied. For the failed model-free models
which possess a local sm parameter whereby its
value at the minimum is infinite, the curvature of
the model-free space can cause the number of
iterations required to find the minimum to be
unreasonably large. Therefore the constraint

sm � 200 ns ð8Þ

was applied to decrease computation time.

Model-free model elimination

For the implementation of model elimination
within model-free data analysis, a series of
empirical rules can be applied prior to model
selection. These rules consist of inequalities con-
taining model-free parameters together with arbi-
trarily chosen constants, �i, such that �i 2 Rþ. The
ensemble of �i creates a set of elimination values
whereby the elements are specified by the index i.
If the inequality has been violated, the model is
judged to have failed. By searching over all grid
points by eye, only the correlation time parameters
can be singled out as suitable for the discrimina-
tion of failed models. In all identified cases of
model failure, either the internal correlation times,
se or ss, or the global rotational diffusion corre-
lation time, local sm, will head towards infinity
rather than minimising to a position in the model-
free space close to the true value.

In situations where one of the model-free
internal correlation times heads towards infinity,
the inequality

se; sf; ss \ �i ð9Þ

could be used for elimination. However, to ac-
count for the anisotropy of macromolecules and
the variability of the global correlation time in real
systems, the inequality

se; sf; ss \ �i � sm ð10Þ

would be more flexible as the internal correlation
times are compared directly with the global cor-
relation time. As sm is the statistically limiting
factor for the extraction of model-free motions
from relaxation data, this inequality would be
better suited for practical applications. A reason-
able and generous value of �i accounting for sig-
nificant anisotropy would be 1.5. This inequality is
not only valid for models m1 to m8 (1.1–1.8) where
a single sm exists as a global parameter for all
residues but is also valid for models tm1 to tm8
(2.1–2.8) where an independent local sm parameter
exists for each residue. In cases where sm tends
towards infinity, the rule

sm \ �i ð11Þ

can be used for elimination. Unlike in Inequality
10, no correlation time parameter can act as a
reference for altering the limit in response to the
variability of the system under study, therefore, a
constant, arbitrary constraint must be used. A
reasonable value of �i in most cases could be 50 ns.
If the protein exhibits significant anisotropy and
the bond vector is parallel to the long axis of the
global rotational diffusion tensor, because the
parameter sm is a local rather than global param-
eter in these models, the empirical value of �i may
need to be increased accordingly. Also, if the
protein is thought to tumble close to or slower
than the fixed value of �i then its value should be
increased as well.

During minimisation, linear constraints have
been implemented by Inequalities 4–7 and, in
certain cases, Inequality 8. These involve con-
straint values ck where k is the constraint index.
For example, as both upper and lower limits on sm
have been set (Inequalities 7 and 8) the parameter
is bound by

ck�1 � sm � ck;

where ck–1=0 and ck=200 s. If an upper con-
straint ck has been set on sm, then the inequality

sm \ �i \ ck ð12Þ

must be used for model elimination. The second
inequality is necessarily exclusive due to the
imperfections associated with machine precision
during minimisation.
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Data analysis and visualisation

After the constrained minimisation of the model-
free model, the errors associated with the model-
free parameters were determined by Monte Carlo
simulations. This error analysis involved the con-
strained minimisation of five hundred independent
simulations using exactly the same methods as the
original model-free model. All model-free calcu-
lations were carried out using the in-house pro-
gram �relax�. The isosurface representations of the
v2 values in the model-free parameter space were
created using the program Open Visualisation
Data Explorer 4.3.2, or OpenDX, from IBM
(http://www.opendx.com). The projections of the
Monte Carlo simulations in the four-dimensional
model-free space of Figure 4 were composed using
the program Grace (http://www.plasma-gate.we-
izmann.ac.il/Grace/), formerly called ACE/gr or
Xmgr.

Results and discussion

Model-free model failure

By searching over the tens of thousands of model-
free minimisations spread throughout the four
separate grids (the Perfect Rex Grid, the Random
Rex Grid, the Perfect Double Motion Grid, and
the Random Double Motion Grid), numerous
examples of failed model-free models are evident.
These cases can be grouped into three categories,
designated as Categories One, Two, and Three,
dependent on how the model failed as well as
which model-free parameters are present in the
model. The first type of failure occurs in the
standard model-free models (Models 1.1–1.8) and
results in one of the internal correlation times, se,
sf, or ss, heading towards infinity (Table 2). The
second category involves model-free models con-
taining the local sm parameter (Models 2.1–2.8)
and results in sm heading towards infinity (Ta-
ble 5). The third category involves the same
models as the second, where a local sm parameter
is present, except that the internal correlation time
heads towards infinity while the global correlation
time, local sm, remains close to the true value
(Table 7). For simplicity, only the first five model-
free models where minimised. Four test cases
(Tables 3, 4, 6, and 8) were selected from the many

failed models to represent these three categories of
failure, the randomised data of which is shown in
Table 1. The first of the test cases involves perfect,
noise-free data, hence, as the relaxation data and
errors can be recalculated from the original model-
free parameter values, is not included in the table.
To understand the latent issues of model failure,
these models will be discussed irrespective of
whether they are selected by AIC model selection
or not.

Category One failures

The first category of failure, whereby one of the
internal correlation time parameters, se, sf, or ss,
heads towards infinity, is associated with model-
free analysis using m1 (Model 1.1) to m8 (Model
1.8). These cases are distinguished by testing
against Inequality 10 where �i is set to the value of
1.5. As the global correlation time of all grid
points was fixed to 10 ns, failure was judged by the
internal correlation time value being greater than
or equal to 15 ns. A comprehensive summary of
the Category One failures for model-free models
m1 to m5 in each of the four grids is presented in
Table 2. Within this table, two distinct subclasses
of failure are evident. The first subclass of failure
occurs in the models which correspond to those
used in the creation of the grids. This is the most
critical type of failure as, although less prominent
prior to model selection, the majority of these
failures appear post model selection. For the Rex

Grid the failed model is m4 (Model 1.4), while for
the Double Motion Grid the failed model is m5
(Model 1.5). This subset of Category One failures
occurs solely within the randomised grids, thus
experimental noise is the genesis of failure.
Potentially, as only synthetic data was tested, noise
may not be the sole factor which induces these
failures in real systems. The second subset of fail-
ures are most evident when the true underlying
model experiences chemical exchange relaxation
yet the fitted model is lacking the Rex parameter.
This Rex compensatory subset of Category One
failures occurs in both m2 (Model 1.2) and m5
(Model 1.5) in cases involving perfect, noise-free
relaxation data and, although not statistically
testable, the presence of noise may slightly increase
the likelihood of failure. For individual data sets
within the Rex Grids, failure may occur solely in
m2, solely in m5, or in both models. This subclass
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is less concerning, however, as only a tiny fraction
of these models are favoured over all others by
AIC model selection.

A representative instance of the critical failures
of models m4 and m5 in the Random Rex and
Double Motion Grids is displayed in Table 3. This
example, which will be referred to as Test Case 1,
is from the Random Rex Grid. The original model-
free parameter values used to generate the rando-
mised 15N relaxation data shown in Table 1 are
{S2=0.952, se=2048 ps, Rex=0.739 s)1}. In this
situation, both subclasses of failure are evident.
Not only are the Rex compensatory failures
apparent in m2 and m5 but, crucially, model m4
has failed. The v2 values and AIC criteria dem-
onstrate that model m4 is the most parsimonious
of all the models and would be selected by AIC
model selection. This is despite the internal cor-
relation time value of 279 ns which, when com-
pared with the global correlation time of 10 ns, is
clearly a failure. Interestingly, the S2 value is zero.
None of the five models in the table have S2 or
internal correlation time values close to the true
values. All models, excluding the failed model m4,

Table 1. The full precision randomised 15N relaxation data and errors used for the model-free minimisation, model-free model

elimination, and model-free model selection of three of the test cases representing the three categories of model failure

Data type Value Error

Test Case 1

600 MHz R1 1.3607438126077531 0.028212431372334083

600 MHz R2 15.285185187439794 0.29273912435875549

600 MHz NOE 0.83126690996568853 0.04

500 MHz R1 1.8453066136464509 0.03603242845760548

500 MHz R2 14.126806539264148 0.27274019888341894

500 MHz NOE 0.75788616726447011 0.05

Test Case 3

600 MHz R1 1.2779288762002963 0.026171608253937394

600 MHz R2 18.601379356945866 0.38878447784580444

600 MHz NOE 0.82445156329111324 0.04

500 MHz R1 1.7217246390621328 0.034023907561236126

500 MHz R2 17.446689867478245 0.33972716512593082

500 MHz NOE 0.77090412852935197 0.05

Test Case 4

600 MHz R1 1.3645031921412598 0.027003467055169744

600 MHz R2 13.502004134930948 0.27434770250574586

600 MHz NOE 0.83775052138736938 0.04

500 MHz R1 1.7596749434196766 0.034823901208962289

500 MHz R2 12.749980907526275 0.25906731578629066

500 MHz NOE 0.84114634537543753 0.05

Table 2. The number of Category One failures prior to and

post model selectiona

Modelb Perfect

RGc

Random

RGc

Perfect

DMGc

Random

DMGc

m1 0 (0) 0 (0) 0 (0) 0 (0)

m2 190 (0) 210 (5) 0 (0) 1 (1)

m3 0 (0) 0 (0) 0 (0) 0 (0)

m4 0 (0) 91(70) 0 (0) 1 (0)

m5 336 (0) 372 (2) 0 (0) 78 (52)

aCategory One failures are defined for models m1 to m8 and are
when the internal correlation time parameter se, sf, or ss heads
towards infinity. Failure was judged as the internal correlation
time being 1.5 times greater than the global correlation time, sm,
of 10 ns. In brackets are the number of failed models chosen by
AIC model selection. bThe parameters of m1 to m5 are given in
Models 1.1–1.5. cThe Perfect grid is an ensemble of noise-free
relaxation data while the Random grid consists of the same
data which has been randomised to add noise. The Rex Grids,
composed of the three dimensions {S2, se, Rex} corresponding
to model m4, are an ensemble of 2640 relaxation data sets. The
Double Motion Grids, composed of the three dimensions {Sf

2,
Ss

2, ss} corresponding to model m5, are an ensemble of 1936
relaxation data sets.
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have S2 values of one and all internal correlation
times are significantly overestimated in spite of the
fact that these values are meaningless when taken
together with an S2 value of one. Clearly the best
of the five models is m3 as it is the only model
which has a parameter value within errors to the
true values with a Rex value of 0.831±0.279 where
the true value is 0.739. The implementation of
model elimination using Inequality 10 would re-
move models m2, m4, and m5 and subsequent
model selection using the AIC criterion would
choose m3. With the given relaxation data and
errors, this result is the most accurate and is best of
all the models despite the inability to extract the
motion at 2 ns.

To visualise exactly how model m4 failed, the
v2 values within three-dimensional model-free
parameter space were mapped to a very fine res-
olution (Figure 1). The dimensions of this space
are S2, se, and Rex while the v2 values are repre-
sented as a fourth dimension, the curvature of the
space, which is illustrated using isosurfaces con-
touring regions of equal value. The position in this
space where the original, true parameter values lie
is indicated by a black sphere. Normally noise
would induce a slight shift from the true parameter
values and cause the area surrounding the mini-
mum to be perturbed but, in this test case, there
appears to be no curvature in the space indicating
the existence of a minimum proximal to the true
values. The v2 value at the position of true
parameters is 13.68 and minimisation initialised
from this point will follow the four-dimensional
valley delineated by the funnel shaped isosurfaces
shown in Figure 1. This v2 minimisation along the

non-linear route of the funnel from the initial
location to the final minimum can be expressed as

min
h

v2ðhÞ ,
S2 : 0:952! 0;
se ðnsÞ : 2:048! 279:145;
Rexðs�1Þ : 0:739! 1:335:

8
<

:

where h={S2, se, Rex} is the model-free parameter
vector. Termination is due to the constraint S2 ‡ 0
preventing minimisation from following the funnel
beyond the limit. If the constraints are lifted, a
different minimum is found

min
h2R3

v2ðhÞ ) v2ðĥÞ ¼ 3:260

where the minimised parameter vector of Test
Case 1 is

ĥ; where
S2 ¼ �1;
se ¼ 1;
Rex ¼ 1:35 s�1:

8
<

:

Rather than the minimum being completely
lost, an alternative hypothesis might be that the
space has been distorted by the noise to such an
extent that the failure lies not in the model but in
the minimisation. The level of zoom together with
the one hundred data point per dimension reso-
lution of Figure 1 may be insufficient for a sharp
and discrete minimum to be visible. Figure 2 dis-
pels this hypothesis by zooming into the region of
the space surrounding the true parameter values
and by comparing this with the equivalent region
in the noise-free space. The top three images
are orthogonal views of the zoomed in space of
Figure 1 which, as Test Case 1 originated from the

Table 3. Test Case 1a model-free parameter values, v2 value, and AIC model selection criteria for the five minimised model free models

Modelb S2 Sf
2 se or ss (ps) Rex (s)1) v2 AIC

m1 1.000±0.006 20.14 22.14

m2 1.000±0.418 4.446e7±2.246e7 20.14 24.14

m3 1.000±0.008 0.831±0.279 7.60 11.60

m4 0.000±0.463 2.791e5±2.401e5 1.335±0.320 3.27 9.27

m5 1.000±0.340 1.000±0.006 3.964e7±1.943e7 20.14 26.14

Truth 0.952 2048 0.739 13.68

aThe randomised 600 and 500 MHz 15N relaxation data used for the fitting of these parameters are shown in Table 1. This case
corresponds to the first category of failure whereby the internal correlation time parameter (se, sf, or ss) shoots towards infinity.

bThe
parameters of m1 to m5 are given in Models 1.1–1.5. The parameters of the model Truth correspond to the true, underlying values used
in the creation of the randomised relaxation data.
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Random Rex Grid, was constructed from noisy
relaxation data. In comparison, the bottom three
images are equivalent orthogonal views of exactly
the same grid point as Test Case 1 except that the
relaxation data originates from the noise-free
Perfect Rex Grid. The sole difference between the
top and bottom model-free spaces is that the top
space is simply the bottom space with noise added.
A clear minimum surrounds the true parameter
values indicated by the sphere in the noise-free
space, minimisation in which returns exact copies
of the true values with a v2 value of zero. In
contrast, this distinct minimum in the noise-free
data has been completely destroyed by noise in the
randomised space of Test Case 1. The perturbation
to the space is so severe that, rather than the
sphere being located next to a minimum, it is
positioned close to the start of the four-dimen-
sional valley, represented by the funnels, which
heads towards infinity in Figure 1. In this test case,
the minimum of the noise-free data has been
squeezed out of existence by the noise.

These Category One, lost minimum failures
occur purely because of the randomisation of the
relaxation data. Unlike the Category One, Rex

compensation failures, AIC model selection will
pick these failed models in the majority of cases.
After model selection, 2.65% of the Random Rex

Grid and 2.74% of the Random Double Motion
Grid consists of these failed models. Although the
percentages are low, these values are significant
due to the catastrophic nature of the failure. In
addition, certain combinations of motions in
macromolecules may induce much higher failure
rates. Because of the low v2 value of the failed
models, no model selection scheme is able to avoid
these models. Therefore failures will surface within
the final results of a standard model-free analysis
unless the models are eliminated prior to model
selection.

A select example representative of the Rex

compensatory subset of failures is shown in
Table 4. In this case, which will be referred to as
Test Case 2, failure occurs solely in model m5.
This Category One Rex compensation test case
originates from the Perfect Rex Grid where the
original model-free model was m4 (Model 1.4).
The grid point corresponding to the test case
has parameter values of {S2=0.931, se=256 ps,
Rex=27.043 s)1}. Perfect 15N relaxation data was

Figure 1. Test Case 1 isosurface representation of the three-dimensional model-free v2 space composed of the parameters {S2, se, Rex}.
The true parameter values of {S2=0.952, se=2048 ps, Rex=0.739 s)1} where used to generate randomised R1, R2, and NOE relaxation
data at 600 and 500 MHz. These values are represented by the black sphere where the v2 value is 13.68. Due to the randomisation of
the relaxation data and the application of constraints, the single minimum is located at {S2=0, se=279.145 ns, Rex=1.335 s)1} where
v2=3.27. If the constraint of S2 ‡ 0 were to be lifted, se would shoot to infinity. The v2 values of the four isosurfaces from outermost to
innermost are 6, 5, 4, and 3.5 and the resolution of the space is one hundred data points per dimension.
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used for the minimisation and Monte Carlo sim-
ulation error analysis, hence, the optimised
parameters of m4 returned exact copies of true
parameter values with a final v2 value of zero.
Although the S2 value of models m1, m2, and m3 is

overestimated, the other parameter values are
reasonably close to the true values. In contrast, the
internal correlation time parameter ss in model m5
has shot to the infeasible value of 83.67 ls. As this
is four orders of magnitude greater than the global

Table 4. Test Case 2a model-free parameter values, v2 value, and AIC model selection criteria for the five minimised model free models

Modelb S2 Sf
2 se or ss (ps) Rex (s)1) v2 AIC

m1 1.000±0.007 1883.11 1885.11

m2 1.000±0.133 336.206±8.477e4 1883.11 1887.11

m3 0.978±0.014 26.346±0.643 34.56 38.56

m4 0.931±0.012 256.000±128.799 27.043±0.633 0.00 6.00

m5 1.000±0.398 1.000±0.011 8.367e7±4.091e7 1883.11 1889.11

Truth 0.931 256 27.043 0.00

aThe relaxation data used in this case was perfect, noise-free data which can be back calculated from the true values. This case
corresponds to the first category of failure whereby the internal correlation time parameter (se, sf, or ss) shoots towards infinity.

bThe
parameters of m1 to m5 are given in Models 1.1–1.5. The parameters of the model Truth correspond to the true, underlying values used
in the creation of the perfect relaxation data.

Figure 2. The lost minimum of Test Case 1. All images are of the three-dimensional {S2, se, Rex} model-free v2 space. The true
parameter values are {S2=0.952, se=2048 ps, Rex=0.739s)1} and are represented by a black sphere. The top three images from left to
right are the front view, side view, and top view of the v2 space of the randomised relaxation data from the Random Rex Grid. These
are simply a zoomed in view of Figure 1. In contrast, the bottom three images show the same angles of the v2 space but originate from
the noise-free relaxation data of the Perfect Rex Grid. The isosurfaces from outermost to innermost correspond to v2 values of 20, 5, 1,
and 0.5 with the exception that the last two isosurfaces are not present in the randomised space. The minimum which is visible in the
noise-free space has been obliterated in the randomised space. Instead of a minimum, the true parameter values are located next to the
start of the funnel visible in Figure 1. The resolution of the space is one hundred data points per dimension.
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correlation time of 10 ns, the model has clearly
failed. Yet despite this failure, comparison of the
v2 values of all models clearly demonstrates that,
within this test case, the failed model m5 will never
be selected as the best model. The v2 value of m4 is
zero while the value of m5 is 1883.11 thus, as both
these models have the same number of parameters,
model m4 should always be chosen over m5

The two models, m2 and m5, in which the
Category One, Rex compensatory subset of failures
occurs (Table 2) are retaliating to the missing Rex

parameter by their internal correlation time
shooting towards infinity. The combination of an
Rex contribution to the R2 together with a model
lacking the parameter results in an apparent in-
crease of the spectral density function at zero fre-
quency, J(0), which would normally correspond to
a slowing of correlation times. The combined effect
of sm being fixed, the apparent increase in J(0), and
the invariance of high frequency spectral density
values, J(x) where x � xH means that, in certain
cases, an increase in the internal correlation time
parameter during minimisation can compensate.
The result is a model which has failed, its fitted
parameter values being clearly incorrect. Fortu-
nately for this type of failure, AIC model selection
very rarely selects these models with only five
failed m2 models and two failed m5 models in the
Random Rex Grid of Table 2 having been selected
which, as a percentage, is 0.265% of all data
points. For the failed models which have not been
selected, the internal correlation time is prevented
from heading to higher values by S2 hitting the
one. Replacing the order parameter with the value
of one in the original Lipari-Szabo model-free
formulas (Lipari and Szabo, 1982a, b) results in a
spectral density equation with no se parameter,
thus the value of the correlation time is meaning-
less. The final value reflects the curvature of the
space prior to S2 minimising to one. With S2 at
this position, se can be changed to any value
without affecting the minimised v2 value, hence the
identical v2 values of models m1, m2, and m5 in
Table 4. In contrast, for the seven cases from Ta-
ble 2 in which a failed model is selected, the S2

value of these models is never one.

Category Two failures

The second category of failure occurs in spaces
which contain both an internal correlation time

parameter, se, sf, or ss, together with a local sm
parameter and is common in model-free analysis
using models tm1 (Model 2.1) to tm8 (Model 2.8).
As the original sm value for all data sets was set to
10 ns, Inequality 12 with the arbitrary time of
�i=50 ns was used to judge failure. This is neces-
sarily less than the constraint value, ck, of 200 ns
which was implemented during minimisation.
Therefore any model with a local sm value greater
than 50 ns is considered a failure. A summary of
all Category Two failures is shown in Table 5.
Comparison with the Category One failures in
Table 2 reveals a very similar pattern of numbers
between the two tables. The Rex compensatory
failures of Category One, which occur in models
m2 and m5 in both the Perfect and Random Rex

Grids, also occur in Table 5. In contrast, the
proportion of failure appears to be much higher
when a local sm parameter is present in the model
and, in addition, a number of these models are
chosen by AIC model selection. Although less
prominent than the first category, the lost mini-
mum subclass of failures is also present within the
table with model tm4 failing in the Random Rex

Grid and model tm5 failing in the Random Double
Motion Grid. The proportion of these models
being accepted by AIC model selection, though, is
much less than that of the first category. A major

Table 5. The number of Category Two failures prior to and

post model selectiona.

Modelb Perfect

RGc

Random

RGc

Perfect

DMGc

Random

DMGc

tm1 17 (0) 17 (0) 0 (0) 0 (0)

tm2 371 (1) 465 (30) 0 (0) 2 (1)

tm3 0 (0) 0 (0) 0 (0) 0 (0)

tm4 0 (0) 21 (9) 1 (0) 5 (0)

tm5 503 (0) 699 (9) 2 (0) 44 (2)

aCategory Two failures are defined for models tm1 to tm8 and
are when the local sm parameter heads towards infinity. Failure
was judged as the local sm parameter being greater than 50 ns.
In brackets are the number of failed models chosen by AIC
model selection. bThe parameters of tm1 to tm5 are given in
Models 2.1–2.5. cThe Perfect grid is an ensemble of noise-free
relaxation data while the Random grid consists of the same
data which has been randomised to add noise. The Rex Grids,
composed of the three dimensions {S2, se, Rex} corresponding
to model m4, are an ensemble of 2640 relaxation data sets. The
Double Motion Grids, composed of the three dimensions {Sf

2,
Ss

2, ss} corresponding to model m5, are an ensemble of 1936
relaxation data sets.
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difference between Categories One and Two is that
model tm1, which possesses a correlation time
parameter, fails a number of times in both Rex

Grids.
A representative example of the Rex compen-

satory subset of Category Two failures is shown
in Table 6. This third test case is from the
Random Rex Grid, the randomised data of which
was back calculated from model-free model m4
with the parameter values of {S2=0.97, se=0.5 ps,
Rex=5.46 s)1} and where the global correlation
time was set to 10 ns. The randomised data and
the errors used for Test Case 3 are shown in
Table 1. Both models tm2 (Model 2.2) and tm5
(Model 2.5) have failed in this test case, as evi-
denced by their local sm parameter being stuck at
the upper limit of 200 ns. In response, the se or ss
parameters have moved to the position of the
global correlation time of 10 ns, while the S2

parameter has shifted towards zero. Both models
have identical parameter values, the additional
parameter S2

f in tm5 which has minimised to one
collapses its model-free formula to that of tm2
where ss and se are one and the same parameter.
Due to the low v2 values of both failed models,
AIC model selection will choose tm2 over all other
models. Despite the S2 values of one in the models
which have not failed, their local sm values are
close to the true value of 10 ns. For models tm3
and tm4, sm is within errors to the true value.
Additionally, both return estimates of Rex almost
within errors, the slight difference being because
of the bias introduced by the S2 value of one. Al-
though not ideal, selection of one of these models
will return reasonable parameter estimates. Model
tm4 would be the least desirable of the non-failed
models as its internal correlation time is overesti-
mated. Hence the best model for Test Case 3
would be tm3 which can be extracted by using the
combination of model elimination followed by
AIC model selection.

The reason for model tm2 failing within Test
Case 3 is demonstrated in Figure 3. This diagram
is the model-free v2 space which was mapped to a
resolution of one hundred data points per dimen-
sion. The three dimensions are sm, S

2, and se and
the curvature of the space is represented by iso-
surfaces delineating regions of identical v2 values.
The black sphere in the image is located at the true
parameter values with the exemption of the Rex

parameter which does not exist within this space.

The v2 value at the true parameter values is 300.17
and, from the curvature of the space, it is clear that
there is no minimum close to this position. As in
Test Case 1, the true values are located close to the
start of a four-dimensional valley visible through
the funnel shaped isosurfaces in the figure. Mini-
misation from this initial position will follow this
highly curved valley and can be represented as

min
h

v2ðhÞ ,
sm ðnsÞ : 10 ! 200;
S2 : 0:970 ! 0:015;
se ðpsÞ : 0:5 ! 10435:

8
<

:

where h is the model-free parameter vector {sm, S
2,

se}. The minimised v2 value is 1.94. If the constraint
of sm £ 200 ns is removed, a new minimum of

min
h2R3

v2ðhÞ ) v2ðĥÞ ¼ 1:891

would be found where the fully minimised
parameter vector is

ĥ; where
sm ¼ 1;
S2 ¼ 0;
se ¼ 10:435 ns:

8
<

:

The minimisation results associated with the
Rex compensatory subset of failures in Category
Two are significantly different from those of
Category One. This is due to the models in the
second category possessing a local sm parameter
whereas, in the first category, the global correla-
tion time was fixed to 10 ns. Just as in the first
category of failure, the R2 values in both Rex

Grids are elevated due to the Rex contribution to
those relaxation data sets. For the models lacking
the Rex parameter, this elevation appears as an
increase in J(0) coupled with the other spectral
density values, J(x) where x „ 0, not changing.
As an increase in J(0) is normally linked to an
increase in one of the correlation times together
with a compensatory decrease in the high fre-
quency spectral density values, all the models
lacking the Rex parameter, tm1, tm2, and tm5,
can compensate by increasing their local sm
parameter. This is visible in Table 5 where, not
only do models tm2 and tm5 fail more often when
compared with Category One, but model tm1
fails 17 times in both Rex Grids as a compensa-
tion for the Rex contribution to the R2. In the
first category of failure (Table 2), models m2 and
m5 failed by allowing their internal correlation
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time to shoot towards ¥ during minimisation,
however, the final result was no different from
model m1 as their S2 values minimised to one. In
contrast, within Category Two models tm1, tm2,
and tm5 fail by allowing their local sm parameter
to shoot towards ¥ and, in the majority of these

failures, the internal correlation time minimises to
the value of the global correlation time while the
order parameter minimises to zero. This flexibility
allows these models to minimise to lower v2 val-
ues and hence they sometimes filter through
model selection.

Figure 3. Test Case 3 isosurface representation of the three-dimensional model-free v2 space composed of the parameters {sm, S
2, se}.

The true parameter values of {sm=10 ns, S2=0.97, se=0.5 ps, Rex=5.46 s)1} where used to generate randomised R1, R2, and NOE
relaxation data at 600 and 500 MHz. These values are represented by the black sphere where, without the Rex parameter, the v2 value is
300.17. Due to randomisation and the fact that this space contains no Rex dimension, the single minimum is located at infinity
{sm=¥ ns, S2=0, se=10.435 ns} where v2=1.89. If an upper constraint of 200 ns is set for the parameter sm, the minimum shifts to
{sm=200 ns, S2=0.015, se=10.822 ns} where the minimum v2 value is 1.94. The v2 values of the four isosurfaces from outermost to
innermost are 500, 100, 20, and 7 and the resolution of the space is one hundred data points per dimension. After minimisation and
model selection, this is the model which is chosen to represent the dynamics of the system.

Table 6. Test Case 3a model-free parameter values, v2 value, and AIC model selection criteria for the five minimised model free

models.

Modelb S2 Sf
2 se or ss (ps) Rex (s)1) Local sm

c (ns) v2 AIC

tm1 1.000±0.007 11.784±0.149 99.48 103.48

tm2 0.015±0.268 10822.6±1967.6 200.000±88.205 1.94 7.94

tm3 1.000±0.038 4.016±1.267 10.471±0.489 5.33 11.33

tm4 0.998±0.104 459.2±2331.7 4.045±1.248 10.471±8.636 5.30 13.30

tm5 0.015±0.214 1.000±0.083 10822.6±1860.4 200.000±75.686 1.94 9.94

Truth 0.97 0.5 5.46 10.0 300.17 9.94

aThe randomised 600 and 500 MHz 15N relaxation data used for the fitting of these parameters are shown in Table 1. This case
corresponds to the second category of failure whereby the local sm parameter shoots towards infinity. bThe parameters of tm1 to tm5
are given in Models 2.1–2.5. The parameters of the model Truth correspond to the true, underlying values used in the creation of the
randomised relaxation data. cThe local sm parameter was constrained within the limits 0 £ sm £ 200 ns.
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Category Three failures

By definition, the third category of failure occurs
in model-free analysis using models tm1 to tm8.
The failure is defined as one of the internal cor-
relation times heading towards ¥ while the local sm
parameter stays at reasonable values. The satis-
faction of Inequality 12 where �i is set to 50 ns
together with the violation Inequality 10 where �i is
set to 1.5 isolates the Category Three failures. As
sm is a parameter of the model, the product �i Æ sm
in Inequality 10 is flexible hence no fixed value of
se, sf, or ss will be eliminated. A summary of all
Category Three failures is presented in Table 7.
The total number of failures which fall under this
third category is much lower than the first two
categories and, importantly, almost none of these
models are selected by AIC model selection. To
understand failure, these models will be investi-
gated nevertheless. Again the pattern within the
table is very similar to the other two categories
(Tables 2 and 5), with the distinctive Rex com-
pensatory failures in models tm2 and tm5 in both
Rex Grids, and the lost minimum failure of model
tm4 in the Random Rex Grid and model tm5 in the
Random Double Motion Grid.

A representative example of the lost minimum
failure in the Random Double Motion Grid is

presented in Table 8 as the fourth test case. Here
the original model was m5 with parameter values
of {Sf

2=0.970, Ss
2=0.970, ss=4096 ps}, thus

S2=0.941. As with the other lost minimum test
cases, the true parameter values can be uncovered
in the noise-free perfect grid with a v2 value of
zero. Essentially, all models in the table return
exactly the same results, all having identical v2

values. In models tm2, tm3, and tm4, the param-
eter se is zero while Rex is insignificant. Failure has
occurred in model tm5 where the parameter ss is
1.3 ls. Despite the failure being a lost minimum, in
this case the symptoms of failure mirror those of
the Rex compensatory failures demonstrated in
Test Cases 1 and 2 (Tables 3 and 4). The order
parameter associated with ss is Ss

2=S2/Sf
2=1

hence ss, during minimisation, has moved towards
infinity but can no longer move as its associated
order parameter has hit one.

From the Category Three table (Table 7), an-
other subclass of failure which is not present in the
first two categories is evident. These appear as a
failure of model tm4 in the Perfect Rex Grid and
model tm5 in the Perfect Double Motion Grid.
Rather than these being a failure of the model-free
model, they are in fact minimisation failures. An
example is from the Perfect Double Motion Grid
where the original model m5 parameters are
{Sf

2=0.388, Ss
2=0.001, ss=2048 ps}. Instead of

finding the trueminimumwhere the v2 value is zero,
the minimised parameter values are {sm=1.73 ns,
Sf

2=0.388, Ss
2=0.963, ss=3460.427 ps} where the

v2 value is 0.00132. This example was judged a
failure because ss violated Inequality 10 where
�i Æ sm=2594 ps. A simple test to differentiate min-
imisation versus model failure was to initialise
minimisation from the true values, the result of
which was only one iteration of optimisation
returning the true values with a v2 value of 1.11e)27.
The reason minimisation failed was because of the
highly convoluted nature of the space induced by
the unrealistically low S2 value together with the
grid search unable to find a position close to the
true values. The Category Three failures are of no
concern, however, as AIC model selection almost
never picks these failures.

Model elimination

One possible solution to the failed model problem
is to attempt to prevent the model from failing by

Table 7. The number of Category Three failures prior to and

post model selectiona.

Modelb Perfect

RGc

Random

RGc

Perfect

DMGc

Random

DMGc

tm1 0 (0) 0 (0) 0 (0) 0 (0)

tm2 25 (1) 16 (0) 1 (0) 1 (0)

tm3 0 (0) 0 (0) 0 (0) 0 (0)

tm4 36 (0) 17 (0) 1 (0) 1 (0)

tm5 22 (0) 13 (0) 36 (0) 39 (0)

aCategory Three failures are defined for models tm1 to tm8 and
are when the internal correlation time parameter se, sf, or ss
heads towards infinity. Failure was judged as the internal cor-
relation time being 1.5 times greater than the variable local sm
parameter. In brackets are the number of failed models chosen
by AIC model selection. bThe parameters of tm1 to tm5 are
given in Models 2.1–2.5. cThe Perfect grid is an ensemble of
noise-free relaxation data while the Random grid consists of the
same data which has been randomised to add noise. The Rex

Grids, composed of the three dimensions {S2, se, Rex} corre-
sponding to model m4, are an ensemble of 2640 relaxation data
sets. The Double Motion Grids, composed of the three
dimensions {Sf

2, Ss
2, ss} corresponding to model m5, are an

ensemble of 1936 relaxation data sets.
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placing an upper constraint on the global and
internal correlation times. When this strategy is
implemented, the result is that the model still fails
but minimisation cannot reach the unconstrained
minimum. The correlation times will then be
stuck at the upper limit and the v2 value will be
elevated in comparison with the unconstrained
value. The change in v2 value will, in some cases,
solve the problem as the likelihood of model
selection choosing one of the other models is in-
creased. This approach is, nevertheless, non-
selective and does not guarantee that the final
model-free results will be free from failed models.
Although constraints can be used to keep
parameter values within reasonable bounds, this
artificially creates the appearance of reliable
parameter values. Yet these parameters will be far
from the true values and therefore a failed con-
strained model with misleading parameter values
will appear in the final results. The application of
constraints can never cause a failed model to
recover by having parameter values close to the
true values, as it is the curvature of the model-free
space itself which is intrinsically linked to model
failure.

The constraint se, sf, ss £ 2sm, which is hard
coded into the program relax, was applied during
minimisation of Test Case 3. Although the limit
has been dropped for Test Cases 1, 2, and 4 for the
express purpose of investigating the reasons for
model failure, this constraint is complementary to
the model elimination inequality se, sf, ss £ 1.5sm.
While the constraint can be used to aid in opti-
misation, the model elimination rule is still neces-
sary for the removal of failed models. Hence both

the constraint and model elimination should be
used together when processing the relaxation data.
The two disparate applications of inequalities are
very much complementary to each other within
model-free data analysis.

It should be noted that a failed model is very
different from a model in which minimisation has
failed. In the first instance the minimum is located
at unreasonable parameter values whereas in the
second the minimum has not been found, in which
case constraints may help. Considering that only
synthetic relaxation data was used to search for
cases of failure, other categories of failed model-
free models may exist when the true underlying
dynamics is much more complex than models m1
to m8. However, assuming that these failures exist,
they cannot currently be identified and may not be
as trivial to discern.

The only solution for preventing model failure
is to collect better NMR spectra with less noise or
to collect additional data. These measures will
improve the curvature of the model-free space and
possibly diminish the number of lost minimum
subset of failures. Yet this is not guaranteed and
the minimum may not be uncovered, hence, failed
models may still be present in the final results. In
the case of the Rex compensatory subset of fail-
ures, no solution exists for their prevention as the
failure is due to the model missing a Rex parame-
ter. As model failure in model-free analysis is
inevitable, the addition of a model elimination step
using Inequalities 10 and 12 between model-free
minimisation and model-free model selection will,
with certainty, weed out the failed models from the
final model-free results.

Table 8. Test Case 4a model-free parameter values, v2 value, and AIC model selection criteria for the five minimised model free

models.

Modelb S2 Sf
2 se or ss (ps) Rex (s)1) Local sm (ns) v2 AIC

tm1 0.973±0.010 9.592±0.118 0.77 4.77

tm2 0.973±0.010 0.000±112.990 9.592±0.114 0.77 6.77

tm3 0.972±0.030 0.012±0.871 9.588±0.346 0.77 6.77

tm4 0.972±0.026 0.000±124.757 0.012±0.786 9.588±0.323 0.77 8.77

tm5 0.973±0.380 0.973±0.073 1.387e6±2.017e9 9.592±1.076e3 0.77 8.77

Truth 0.941 0.970 4096 10.0 2.94

aThe randomised 600 and 500 MHz 15N relaxation data used for the fitting of these parameters are shown in Table 1. This case
corresponds to the third category of failure whereby the internal correlation time parameter (se, sf, or ss) shoots towards infinity while
the local sm parameter remains at reasonable values. bThe parameters of tm1 to tm5 are given in Models 2.1–2.5. The parameters of the
model Truth correspond to the true, underlying values used in the creation of the randomised relaxation data.
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Monte Carlo simulation failure

Model failure has been identified within model-
free data analysis, manifesting itself as when one of
the correlation times heads towards infinity. This
problem surfaces not only after the initial mini-
misation of the model-free models but it can
also plague error analysis by affecting individual
Monte Carlo simulations. Fundamentally, each of
the n Monte Carlo simulations is an independent
model-free data set. They all germinate from the
same synthetic relaxation data which is back cal-
culated from the minimised model-free parameter
values of the selected model. The segregation
originates from the n discrete randomisations of
the synthetic relaxation data which creates n dis-
tinct relaxation data sets. Each data set is mini-
mised separately using the same methodology as
for the real relaxation data. As the failure of
models is intricately linked to the relaxation data
itself, the n randomised simulations which mirror
the data used in the randomised Rex and Double
Motion Grids are thus susceptible to the same
failures. Only the lost minimum subset of failures
surfaces within Monte Carlo simulations as the
Rex compensatory subset of failures are precluded
by the nature of simulation construction. The
elevated R2 values are dealt with prior to error
analysis by the model elimination and AIC model
selection data analysis steps and, therefore, the fi-
nal model used for the Monte Carlo simulations
should include an Rex parameter.

An extreme example illustrating the signifi-
cance of simulation failure is if just one single
simulation out of a million has a se parameter
which minimises to infinity, the standard deviation
of se will then be infinity. In reality, the standard
deviation should be much lower – the single outlier
causes a catastrophic failure of error analysis. A
demonstration of the failure of Monte Carlo sim-
ulations is displayed in Figure 4. The original
relaxation data used in this example, which will be
called Test Case 5, is from the Perfect Rex Grid
where the original model is m4. The true model-
free parameter values, which are found to machine
precision by v2 minimisation, are {S2=0.931,
se=2048 ps, Rex=1.644 s)1}. These values are, for
comparison, very similar to those of Test Case 1
(Table 3 and Figures 1, 2). Five thousand Monte
Carlo simulations were minimised to generate the
figure. While the fourth dimension, v2, of Test

Case 1 could be mapped as a continuous surface in
a three-dimensional space, the simulations are
independent, each mapping to a different position
within this space. Consequently, the simulations
within the four-dimensional {S2, se, Rex, v2}
model-free space are best represented visually by
the six orthogonal two-dimensional projections of
that space (Figure 4). Despite the completely dif-
ferent circumstances, another example portraying
Monte Carlo simulations in this manner has been
made by Andrec et al. (1999) however, in that
case, no failures have occurred. To further en-
hance the visualisation of this space, the se
dimension is plotted on a log scale. In the figure,
the top three projections can be used to recon-
struct a three-dimensional space excluding the v2

values. Comparison with the complementary three
bottom images of Figure 2, which is the perfect,
noise-free v2 space of Test Case 1, unequivocally
demonstrates that the positional probability of the
Monte Carlo simulation is intrinsically coupled to
the curvature of the v2 space of the original
relaxation data. The contours of equal v2 value in
Figure 2, represented by isosurfaces, clearly mat-
ches the density of the Monte Carlo simulations in
Figure 4.

The same rules for model elimination can be
used for culling failed Monte Carlo simulations. In
Test Case 5 (Figure 4), Inequality 10 with �i set to
1.5 was used to part the simulations. As the global
correlation time was 10 ns, any simulations with a
se value of greater than 15 ns was removed. These
are represented in the figure as open circles
whereas the accepted simulations are presented as
crosses. The arbitrary nature of the line drawn
through the model-free space used to segregate
failure from non-failure is visible in the projections
possessing a se dimension. However, the projec-
tions with a S2 dimension illustrate the accuracy of
�i set to 1.5 – only open circles fall outside of the
well defined S2 distribution. Without eliminating
the failed simulations, the model-free parameter
errors are quite large (Table 9) with the se error
being considerably greater than the value of the
parameter itself. After removal of the failed sim-
ulations using Inequality 10, the parameter errors
are a much more reliable description of the system.
The bias introduced into the error analysis by not
removing these outliers is embodied in an order of
magnitude overestimation of the S2 and se stan-
dard deviations (Table 9).
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The failure of Monte Carlo simulations has
been previously identified and their removal at-
tempted by the trimming of the upper and lower
tails of the v2 distribution of simulations prior to
calculating the standard deviation of the parame-
ters. This process is implemented within the
Modelfree program (Palmer et al., 1991; Mandel
et al., 1995). In Figure 4, the one-dimensional
projection of the three bottom images onto the v2

axis, each returning the same projection, is the
distribution of v2 values for all 5000 simulations.
The failed simulations are evenly dispersed
throughout this distribution. When 10% of the
simulations are culled by pruning the tails of the
v2 distribution, the bias in the parameter errors
are slightly increased in comparison with the
errors calculated using all simulations (Table 9).
Although an upper limit on se may cause some of
the v2 values of the failed simulations to be
elevated, this does not guarantee that the v2 values
of these simulations will be clustered at the upper

Figure 4. The results of five thousand Monte Carlo simulations represented by the six orthogonal projections of the four-dimensional
space consisting of the dimensions S2, se, Rex, and v2. The true parameter values used to back calculate the noise-free relaxation data of
Test Case 5 are {S2=0.931, se=2048 ps, Rex=1.644 s)1}. Minimisation of the noise-free data returned parameter values within
machine precision to the true values with a chi-squared value of 3.21e)28. For the minimisation of the model-free parameters of both
the relaxation data set and the simulations, no upper limit on se was used. Each cross or circle corresponds to one Monte Carlo
simulation. Using Inequality 10 with �i set to 1.5, as the global correlation time was set to 10 ns, simulations with a se value greater than
15 ns were eliminated. These are represented by circles while all other simulations are represented by crosses. The empirical rule for
elimination can be seen to be completely arbitrary. The projection of all simulations onto the v2 axis is the v2 distribution and, from
these plots, it can be seen that the v2 values of the failed simulations are evenly distributed throughout this distribution.

Table 9. The model-free parameter values of the Test Case 5

model m4 together with the errors calculated from the five

thousand Monte Carlo simulations.

Data set S2 se (ps) Rex (s)1)

True valuesa 0.931 2048.00 1.644

Minimised valuesb 0.931 2048.00 1.644

Errors (all simulations)c 0.210 38403.47 0.342

Errors (elimination)d 0.019 1624.20 0.342

Errors (10% trimming)e 0.212 38785.36 0.341

aThe true values of Test Case 5 used to back calculate the
original noise-free relaxation data. bMinimisation returned the
true values to within machine precision with a v2 value of
zero. cAll Monte Carlo simulations have been used in the cal-
culation of parameter standard deviations. dExclusion of the
failed Monte Carlo simulations, judged by the se parameter
being greater than 15 ns, from the calculation of parameter
standard deviations. eExclusion of the upper and lower tails of
the v2 distribution of Monte Carlo simulations from the cal-
culation of parameter standard deviations.
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tail of the v2 distribution. Therefore the selective
elimination of failed simulations should be imple-
mented over the non-selective trimming of simu-
lations using the distribution of v2 values.

Conclusion

Model failure has been identified as a phenomenon
which plagues model-free analysis and is mani-
fested through one of the correlation time
parameters heading towards infinity. Dependent
on the set of model-free models employed as well
as which correlation time parameter tends to
infinity, these failures can be classified into one of
three major categories. The first category of failure
surfaces during standard model-free analysis using
models m1 (Model 1.1) to m8 (Model 1.8) and is
characterised by the internal correlation time, ei-
ther se, sf, or ss, shooting to infinity (se, sf, or
ss fi ¥). The second and third categories both
occur in model-free analysis using models tm1
(Model 2.1) to tm8 (Model 2.8) where the global
diffusion tensor is replaced by the local sm
parameter. The second category is defined as the
local sm fi ¥ whereas within the third category
the local sm parameter remains close to the true
value while se, sf, or ss fi ¥. These three cate-
gories can be further subdivided into the lost
minimum subset of failures whereby the minimum
present in the equivalent noise-free data has been
distorted to such an extent that it no longer exists
or the Rex compensatory subset of failures
whereby the correlation time is compensating for a
missing Rex parameter.

The lost minimum subdivision of failures have
also been observed to affect individual Monte
Carlo simulations. The n simulations are equiva-
lent to n independent model-free minimisations.
As these have been randomised using the experi-
mental errors, the simulations are analogous to the
randomised data of the Rex and Double Motion
Grids which were used to identify cases of model
failure. If the small number of Monte Carlo sim-
ulation failures are not removed prior to calcu-
lating the model-free parameter standard
deviations, these outliers cause a catastrophic
overestimation of the errors.

Model-free data analysis is purely modelling
incorporating the mathematical field of optimisa-
tion, specifically v2 minimisation (Palmer et al.,

1991; Mandel et al., 1995; Orekhov et al., 1995;
Fushman et al., 1997), and the statistical field of
model selection to choose between a number of
preset models (Mandel et al., 1995; d�Auvergne
and Gooley, 2003; Chen et al., 2004). Between
these two steps, the mathematical modelling con-
cept of model validation should be implemented.
The result of not removing the failed models prior
to model selection is that the final results of a
model-free analysis will likely include models with
parameter values far from the truth. Although the
alternative models selected after elimination may
be missing certain parameters, the values of those
which remain are reasonably close to the truth.
The removal of failed model-free models and
Monte Carlo simulations can be performed by
testing the correlation time parameter against the
linear Inequalities 10 and 12. These simple
empirical rules will selectively eliminate the failed
models and simulations. The use of either con-
straints or the trimming of the upper and lower
tails of a v2 distribution does not solve the prob-
lem as these techniques are non-selective. Never-
theless, the constraints should be implemented to
simplify optimisation. The sequence of data anal-
ysis steps which will yield the most accurate
model-free results is, in order, model-free minimi-
sation, model-free model elimination, and finally
model-free model selection. In addition, elimina-
tion of failed Monte Carlo simulations is essential
for the error analysis of the final model-free re-
sults.
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